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Abstract. In this paper, we introduce JNET, a novel constraint representation
and reasoning framework that supports procedural constraints and constraint at-
tachments, providing a flexible way of integrating the constraint system with a
runtime software environment and improving its applicability. We describe how
JNET is applied to a real-world problem – NASA’s Earth-science data processing
domain, and demonstrate how JNET can be extended, without any knowledge of
how it is implemented, to meet the growing demands of real-world applications.

1 Introduction

Constraint-based reasoning has been shown to be useful in representing and reason-
ing about such diverse problems asgraph coloring, scene labeling, resource allocation
[27,24], andplanning and scheduling[10,11,21]. In theory, the problem in hand is
formalized as a constraint satisfaction problem (CSP) and is solved by using CSP algo-
rithms such as backtracking. In practice, real-world applications often involve complex
constraints that do not fall into the constraint definition in textbooks or in research pa-
pers, and are hard or impossible to model with built-in constraints in commercial con-
straint systems [1,2,6]. It is indeed the case that more and more commercial systems
are available with more comprehensive built-in constraint libraries, and some even al-
low users to extend the constraint library by implementing domain specific constraints.
However, extending a constraint library is not a ultimate solution [26], not mention be-
ing a great burden for the user of a constraint system to extend the system itself. There
are many real-world applications, for example, the application of constraint-based plan-
ning to processing earth-observing satellite data [13], where the constraints involved are
arbitrarily complex and dynamic, extending a constraint library may not be sufficient or
even feasible.

We are applying constraint-based planning to software domains like the Earth-
science data processing domain. Earth-science data processing is the problem of trans-
forming low-level observations of the Earth system, such as data from Earth-observing
satellites and ground weather stations, into high-level observations or predictions, such
ascrop failure or high fire risk. Given the large number of socially and economically
important variables that can be derived from the data, the complexity of the data pro-
cessing needed to derive them and the many terabytes of data that must be processed
each day, there are great challenges and opportunities in processing the data in a timely
manner, and a need for more effective automation. Our approach to providing this au-
tomation is to cast it as a planing problem: we represent data-processing operations as



planner actions and desired data products as planner goals, and use a planner to generate
data-flow programs that produce the requested data.

Constraints arise naturally in this planning problem. Specifications of data inputs
and outputs include constraints indicating geographic regions of interest, thresholds
on resolution, data quality, file size, etc. Specifications of data-processing operations
include constraints relating the inputs of the operations to the outputs, where inputs
and outputs are complex objects such as satellite images and weather forecast data. For
example, scaling an image creates a new image whose dimensions are some multiple
of the dimensions of the original. In the course of planning, additional constraints arise,
specifying how parameters of an action depend on the parameters of other actions in the
plan. Because of the complex objects involved in the constraints and because the world
is large and dynamic, it is impossible to enumerate in advance all possible objects,
such as satellite images, much less provide an explicit representation of the constraints
among them. Most significantly, many of the constraints in the data processing domain
are very complex, but are implemented as executable code in a software environment.
Reimplementing them in a constraint reasoning system would not only be difficult, but
would also violate the principle that information should exist in only one place.

To make matters worse, even theplanning domaincan change dynamically. In or-
der to accommodate the changing availability of data feeds and other resources and to
incorporate new Earth system models, some of which are produced automatically by
machine learning algorithms, the planner must be able to handle the addition and re-
moval of planner actions, data types and other components in aplug-and-playfashion,
even during plan construction. Some of these definitions, such as those corresponding
to newly learned Earth system models, are previously unseen components received re-
motely by the planner. Since any of these definitions can include arbitrary constraint
definitions, the set of constraints that are available also changes dynamically.

We would like to integrate the constraint reasoning system with the runtime soft-
ware environment so that the operations provided by the environment can be used as
constraints. We would like the constraint system toquerythe environment, to dynami-
cally determine what objects exist and what attributes or properties those objects have.
Doing so requires being able to define types in the constraint system that correspond to
entities within the runtime environment and to define constraints in terms of operations
supported by the runtime environment.

The procedural constraint reasoning framework (we will call it CNET, for Con-
straint NETwork) introduced in [18,19], comes close to providing the capabilities we
need. CNET allows implementation of procedure constraints, but in a static Constraint
library. It would be difficult, if not impossible, to code the complex and dynamic con-
straints in the data processing domain.

We have implemented a hybrid constraint reasoning system, called JNET (for Java
constraint NETwork), as a component of the planner-based agent called IMAGEbot
[13], as shown in Figure 1. JNET builds upon the CNET, not only extending the CNET
constraint library, but more importantly, providing a better way to model domain spe-
cific constraints; that is, it allows arbitrary, complex constraints to be defined at run-
time in a plug-and-play fashion usingconstraint attachments, constraints specified in
terms of functional Java methods, which are concise and simple to specify without any
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Fig. 1.The architecture of IMAGEbot

knowledge of the workings of JNET but which interact well with the JNET search and
propagation algorithms.

The contributions of JNET include the use of regular expressions to represent string
domains [15], support for universally quantified constraints [14], constraints over struc-
tured objects, and planning-graph-based constraint propagation algorithms (to be re-
ported), but this paper focuses on theconstraint attachmentswhich allow JNET to di-
rectly interact with a runtime environment, greatly improving applicability of constraint
techniques.

The remainder of the paper is organized as follows: In Section 2, we present the
JNET framework. In Section 3, we discuss the application of JNET to data processing.
In Section 4, we briefly review related work. In Section 5, we summarize our contribu-
tion.

2 Procedural Reasoning Framework

The architecture of IMAGEbot is described in Figure 1. A planning problem, specified
in the DPADL language [12], is reformulated in the IMAGEbot Planner as a CSP. This
CSP is handled by JNET, which will be discussed in this section. We begin by reviewing
some needed CSP concepts and notations.

2.1 Constraint Satisfaction Problems

A Constraint Satisfaction Problem (CSP) consists of variables, domains, and constraints.
Formally, it can be defined as a triple <X,D,C> whereX = {x1,x2, . . . ,xn} is a finite
set of variables,D = {d(x1),d(x2), . . . ,d(xn)} is a set of domains containing values the
variables may take, andC = {C1,C2, . . . ,Cm} is a set of constraints. Each constraintCi

is defined as a relationR on a subset of variablesV = {xi ,x j , . . . ,xk}, called the con-
straint scope.R may be represented extensionally as a subset of the Cartesian product
d(xi)×d(x j)× . . .×d(xk). A constraintCi = (Vi ,Ri) limits the values the variables in
V can take simultaneously to those assignments that satisfyR. A solution to the prob-
lem is an assignment of values to variables inX satisfying constraints inC. The central
reasoning task (or the task of solving a CSP) is to find one or more solutions.

Many search and propagation algorithms have been developed for solving constraint
problems [22]. However, constraints involved in real-world applications, such as the
data-processing domain, represent new challenges as to how to represent these con-
straints. Constraint procedures are introduced to address the issue.



2.2 Constraint Procedures

The idea of procedural reasoning in constraint satisfaction [18] is to augment a general
constraint search algorithms with specific procedural methods that can quickly solve
certain types of subproblems and prune a search space that contains no potential so-
lutions. In a certain sense, similar techniques have been widely used in solving binary
CSPs: that is, enforcing arc-consistency while searching for solutions by backtracking
[25]. There have been many algorithms published for enforcing arc-consistency [3], but
the question of how to detect and then remove inconsistent values has largely been ig-
nored, because it seems to be a trivial implementation issue when dealing with binary
constraints, which can be uniformly represented as a 0-1 matrix (assuming finite do-
mains). However, when it comes to non-binary constraints, enforcing local consistency
relative to a constraint is not obviously a trivial task. For example, letz > x+ y be a
constraint on 3 integer variables over domain{0,1,2}. We know thatz cannot take 0,
thatx andy cannot take 2 simultaneously, and that< 1,0,1 > is not a consistent triple,
but how to identify these inconsistent values, inconsistent value pairs and triples is not
trial anymore. Even for this simple constraint, there are many ways to implement it;
some may eliminate inconsistent values, and some may eliminate value pairs or triples.

In fact, constraints in different application domains are represented and enforced
in different ways. In addition, many constraint problems contain simple functional re-
lations (e.g. arithmetic equations) and simple subproblems (e.g. linear equations with
unknowns) that can be solved quickly by using existing algorithms. The question be-
comes 1) how to uniformly represent constraints that arise in different applications;
2) how to take advantage of such algorithms in order to significantly improve search
efficiency. The procedural reasoning framework addresses this question [18].

A constraint procedurep is a function that maps a CSPIP = (X,D,C) to another
CSPIP′ = (X,D′,C′) such that: 1)d′(xi)⊆ d(xi) for eachxi ∈ X, d(xi) ∈D, d′(xi) ∈D′;
2) for each constraintCh = (Vh,Rh) ∈ C there exists a constraintC′h = (Vh,R′h) ∈ C′,
such thatCh andC′h have the same scope andR′h⊆ Rh.

The concept of constraint procedures provides a uniform and efficient method to
represent and reason with constraints. In terms of representation, constraint procedures
can be used to define any kind of constraints over any kind of variables. In fact, by the
CSP definition in Section 2.1, a constraint on a subset of variables can be seen as a
function that maps the universal relation on the variable subset into a restricted relation
on the same variables defined by the constraint. Take constraintz> x+y as an example;
the universal relation on these 3 variables is a set of 27 triples{< 0,0,0 >,< 0,0,1 >
...,< 2,2,2 >}, and the restricted relation on these 3 variables is a set of value triples
without any inconsistent ones. If the constraint can be seen as a function mapping this
universal relation to the restricted relation, then it can be represented as a procedure,
which is suppose to eliminate inconsistencies when executed.

From the reasoning point of view, constraint procedures can be applied for the pur-
pose of both maintaining consistency and searching for a solution. For example, if
< 1,0,1 >is assigned to< z,x,y >, executing the constraint procedure should return
a failure. However, it may do more than just maintaining consistency. For example,
when 1 is assigned toz, a procedure can eliminate 2 from the domains ofx andy. If
< 1,0 > is assigned to< z,x >, the procedure can eliminate both 1 and 2 from the



domain ofy. Now variabley has only one value left, so there is no need for search on
this variable.

2.3 Constraint Attachments

The idea of constraint procedures is great, but how to implement constraint procedures
is another issue. The good news is that the procedural reasoning framework – CNET –
is implemented in C++ at NASA Ames and it has been successfully applied to solving
constraint problems in many NASA missions (e.g., the MAPGEN Planner, used to gen-
erate command sequences for the Mars Exploration Rovers, uses part of it) . However,
it still falls short of our requirements in the data processing domain, as discussed in
Section 1, which leads us to extend the framework to includeconstraint attachments.

A key goal of constraint attachments is to allow domain-specific constraints to be
expressed intuitively, with no knowledge of the internals of the constraint reasoning
system (e.g., JNET in this case), and loaded or unloaded at runtime in a plug-and-play
fashion. Thus, the constraints should contain no reference to JNET API calls or data
structures such as Variable, Value, Domain, etc.

In keeping with our goal of simplicity, we define a constraint attachment as a set
of functional methods, each of which determines the value(s) of one variable based on
the value(s) of the others. This decision is based entirely on the fact that functions and
variable assignment are such a familiar idioms, being the building blocks of the most
popular programming languages. Each method takes a list of arguments as input vari-
ables and returns the calculated result for its output variable. For example, the constraint
x+y = zwould, in general, include three methods:z← x+y, x← z−y, andy← z−x.
The methodz← x+y calculatesz’s domain based on the domains of the given variables
x andy, and it is usually invoked when either or both domains ofx andy changes.

Formally, an attachment is a pair <P,m>, whereP is asignatureandm is amethod.
Conceptually,P specifies the arguments and return values of the methodm as a list,
{ a0,a1, . . .an}, where the first argument,a0, designates the variable that will be as-
signed the return value ofm anda1, . . . ,an designate the variables that will provide the
arguments tom. The argumentsai are not just variables, however. If we were only in-
terested in implementing attachments that took singletons as arguments and returned
singletons as results, then all we would need forP would be a list of variables. Instead,
we allow the domain modeler to specify that an argument represents an entire domain,
which may be in the form of a finite set or an interval. Thus, in addition to the vari-
able, it is also necessary to specify what form the domain should take: a singleton, set
or interval. Each argumentai , then, is a pair <xi , ti>, wherexi is a variable from the
constraint network andti specifies the form that the domain ofxi should take;ti ∈{1,
bℑc, dℑe, S }, where 1 is used to denote a singleton,bℑc anddℑe denote the lower and
upper bound of an interval, respectively, andS denotes a finite set. The methodm will
only be applicable if each of the domainsd(xi) can be converted to the representation
ti required bym. For example, ifti =bℑc, thend(xi) must be a numeric domain whose
values all fall within a given closed interval, with no gaps. If that is the case, then the
value ofaiwill be the lower bound of that interval. The choice of domain representation
is based on what can conveniently be expressed without reference to JNET internals or
special data structures. In particular, by splitting the calculation of interval domains into



separate calculations on the upper and lower bounds, we ensure that the user-supplied
code need only refer to single values of the appropriate type or sets, both of which are
provided by all major programming languages.

2.4 Comparing attachments to procedures

In general, the notion of a constraint procedure encompasses a wide range of constraint
reasoning techniques, from simple propagation to complete search methods. For exam-
ple, any constraint algorithm that finds all solutions to a given CSP can be considered as
a procedure constraint over all variables, because it is a function that maps the univer-
sal relation on all variables to a restricted relation containing all solutions. Constraint
attachment, as a different constraint representation techniques, can also be considered
a special case of constraint procedure.

An advantage of constraint attachment over constraint procedure is its flexibility in
representing and reasoning with constraints. Given a constraint attachment, not only
can a set of functional methods be selectively implemented, but also the implemented
methods can be selectively executed by a constraint propagator or a constraint solver
without any tailoring of the propagator and the solver to the specific constraints. This
selective execution can exploit the knowledge of what variable domain a given method
will affect and what variable domains that method depends on, using the signatureP.
The more general constraint procedures are more opaque.

Most importantly, constraint attachment allows constraint to be defined dynami-
cally at runtime and allows executables in the application domains to be invoked by
constraint execution, which provides a flexible way of integrating the constraint system
with a runtime software environment and significantly improves applicability of con-
straint systems. We will discuss in detail how JNET interacts with a dynamic runtime
environment in Section 3.

2.5 Implementation

JNET is implemented in Java. It contains classes for variables, domains, constraints,
and search and propagation algorithms. Each variable is associated with a domain. A
variable domain can be finite or infinite, in which case it is represented as an an interval
(for numeric types), regular expression (for string types), or symbolic set (for object
types).

The JNET constraint solver contains several search algorithms, including depth-first
search, backjumping and conflict-directed backjumping, all interleaved with the JNET
propagator, which controls the execution of constraints; that is, when the solver assigns
a value to a variable, the propagator will execute all those constraints containing the
variable and will continue to execute constraints until there are no more changes. The
propagation essentially maintainsgeneralized arc-consistency[20]. If a variable domain
becomes a singleton during propagation, it is considered to have a value assignment and
is removed from the searchable variable set to avoid unnecessary search. Therefore,
propagation plays an important role in the problem solving process.

The constraints are implemented as procedures or constraint attachments. A pro-
cedural constraint consists of a set of variables (the scope) and a procedure (i.e., an



Algorithm 1 Implementation of Constraintx+y < z
Let d(x) = [xmin,xmax], d(y) = [ymin,ymax], and d(z) = [zmin,zmax]

execute(X = {x,y,z})

1. if d(x), d(y), or d(z) is empty,return failure ;
2. zmin← xmin+ymin; xmax← zmax−ymin; ymax← zmax−xmin;
3. if (zmin 6=−∞) d(z)← d(z)∩ [zmin,zmax]
4. if d(z) is emptyreturn failure ;
5. if (xmax 6= ∞) d(x)← d(x)∩ [xmin,xmax]
6. if d(x) is emptyreturn failure ;
7. if (ymax 6= ∞) d(y)← d(y)∩ [ymin,ymax]
8. if d(y) is emptyreturn failure ;
9. return success;

Algorithm 2 Implementation of the attach constraint
Let P be the signature andm the Java method as defined in Section 2.3.

execute(<P,m>)

1. for each < xi , ti >∈ P where i > 0

(a) if (d(xi) is not representable as a domain of type ti ∈{1, bℑc, dℑe, S })
return success;

(b) else let di be d(xi) represented as type ti;

2. let v0←invoke m(d1, . . . ,dn)

3. assign d(x0)← d(x0)∩


{v0} if t0 = 1
v0 if t0 = S
[v0,∞) if t0 = bℑc
(−∞,v0] if t0 = dℑe

4. if (d(x0) is empty)return failure
5. return success;

execute()method) that enforces the underlying constraints on the variables. Executing
a constraint eliminates inconsistent values from the domains of variables in the scope;
that is, it examines the current domains and eliminates any values that are not consis-
tent with values remaining in domains of other constrained variables. If execution of a
constraint results in an empty variable domain,execute() returns failure indicating the
violation of the constraint. In the current version, the JNET constraint library contains
about 30 application-independent constraints, such asequality, less-than, maximum
andminimum, cardinality, regular expressionmatch and stringconcatenation. For
example, an implementation of constraintx+y < z , wherex, y, andz are interval vari-
ables, is described in Algorithm 1.

Constraint attachments are implemented on top of procedure constraints. In particu-
lar, there is a procedure constraint,attach, in JNET, which implements theexecute(<P,m>)

method for an attachment<P,m>, as shown in Algorithm 2.



Constraint attachment allows the JNET users to define domain-specific constraints
not included in the JNET library by implementing some attached functional methods
and creating newattach constraint instances to call these methods. More conveniently,
new instances ofattach constraints can be created to call the methods or algorithms
already implemented in the run-time environment to enforce the user constraints, which
we discuss in the next section.

3 TOPS Case Study

As a demonstration of our approach, we have applied our constraint-based planning
system—IMAGEbot—to the Terrestrial Observation and Prediction System (TOPS,
http://www.forestry.umt.edu/ntsg/Projects/TOPS/), an ecological forecasting system that
assimilates data from Earth-orbiting satellites and ground weather stations to model and
forecast conditions on the surface, such as soil moisture, vegetation growth and plant
stress. Prospective customers of TOPS include scientists, farmers and fire fighters. With
such a variety of customers and data sources, there is a strong need for a flexible mecha-
nism for producing the desired data products for the customers, taking into account the
information needs of the customer, data availability, deadlines, resource usage (some
scientific models take many hours to execute) and constraints based on context (a sci-
entist with a palmtop computer in the field has different display requirements than when
sitting at a desk). IMAGEbot provides such a mechanism, accepting goals in the form
of descriptions of the desired data products.

The goal of the TOPS system is the monitoring and prediction of changes in key
environmental variables. The inputs needed by TOPS include satellite data, such as
Fractional Photosynthetically Active Radiation (FPAR), and weather data, such as pre-
cipitation. There are several potential candidate data sources for each input required by
TOPS at the beginning of each model run. The basic properties of the inputs are listed
in Table 1. Even with this fairly small model, there is a good variety of inputs we need

Source Variables Frequency Resolution Coverage
Terra-MODIS FPAR/LAI 1 day 1km, 500m, 250m global
Aqua-MODIS FPAR/LAI 1 day 1km, 500m, 250m global

AVHRR FPAR/LAI 10 day 1km global
SeaWIFS FPAR/LAI 1 day 1km x 4km global

DAO temp, precip, rad, humidity 1 day 1.25 deg x 1.0 deg global
RUC2 temp, precip, rad, humidity 1 hour 40 km USA
CPC temp, precip 1 day point data USA

Snotel temp, precip 1 day point data USA
GCIP radiation 1 day 1/2 deg Continental

NEXRAD precipitation 1 day 4 km USA

Table 1.TOPS input data choices

to select from, depending on the desired data products.



In addition to the attributes listed in the table, data sources also vary in terms of
quality and availability—some inputs are not always available even though they should
be. For example, both the Terra and Aqua satellites experienced technical difficulties
and data dropouts over periods ranging from few hours to several weeks. Depending on
the data source, different processing steps will be needed to get the data into a common
format. We have to convert the point data (CPC and Snotel) to grid data, which by itself
is a fairly complex and time-consuming process, and we must reproject grid data into a
common projection, subset the dataset from its original spatial extent, and populate the
input grid used by the model. The data are then run through the TOPS model, which
generates the desired outputs.

The architecture of IMAGEbot is described in Figure 1. Planning domains are spec-
ified in a language called the Data Processing Action Description Language (DPADL)
[12], which allows the description of planning domains that involve data processing
operations as well as the constraints appearing in those domains.

The planning specification, which contains object types and attributes, functions
and relations, as well as planner actions and goals, is loaded by the parser and passed
to the planner. The planner constructs a data structure we call alifted planning graphto
concisely represent the search space. A lifted planning graph is similar to the planning
graph data structure used by Graphplan-based planners [4]. A planning graph is a lev-
eled graph of alternating “proposition” and “action” levels, in which the first level nodes
comprise all propositions that are true in the initial state, the second level nodes repre-
sent all ground actions whose propositions are present in the first level, the third level
contains all propositions achievable by executing actions in the second level, and so
on. Arcs are present between an action and the propositions in its preconditions (prior
level) and its postconditions (following level). Because a grounded representation is
not an option in data processing domains, where the universe is large, uncertain and
dynamic, we use alifted planning graph, which can contain variables and constraints
among those variables, and in which the “proposition” level mainly comprises objects,
with arcs to the inputs and outputs of actions. For example, the planning graph in 2,
constructed from a planning specification file in Figure 4, contains objects, shown as
round nodes, and actions shown as rectangular nodes.
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Fig. 2. A portion of the planning graph corresponding to a plan from the TOPS domain. The
rectangular nodes represent actions and the round nodes represent objects that are input/output
by the actions. The labels inside object nodes are attributes of the objects.

After the initial graph is constructed, a CSP representing the search space is built.
The uncertain and dynamic nature of the planning problem requires us to interleave



planning, constraint reasoning and execution, so in general there are subsequent iter-
ations, in which the graph is expanded, dead ends are pruned, and the corresponding
variables and constraints are added or removed from the CSP. This requires JNET to be
able to handle dynamic CSPs.

The CSP corresponding to the planning graph in Figure 2 contains 776 variables and
964 constraints. There are 280 boolean variables representing the arcs (causal links) and
conditions in the plan, 164 integer variables and 111 string variables representing action
parameters and object attributes, and 107 object variables representing TOPS objects
and instances, as well as action parameters and object attributes. Except for boolean
variables, most variables initially have infinite domains, represented as symbolic sets,
intervals, and regular expressions for object, integer, and string variables respectively.

There are 326 instances ofattach constraints for interaction with the TOPS en-
vironment, and the rest are procedural constraints reflecting the planning problem. A
part of the constraint graph from the planing graph in Figure 2 is shown in Figure 3.
The constraints, for example,CondEqual(tout.year=y , tout.year , y ), means that
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Fig. 3.A portion of the constraint network from the planning graph in Figure 2.

variabletout.year=y is true iff variabletout.year equals variabley . In general,
we have boolean constraints such as

ImpliesXOR(c,x1, . . . ,xn), i.e., c⇒ x1⊗ . . .⊗xn

CondOr(c,x1, . . . ,xn), i.e., c⇔ x1∨ . . .∨xn

CondAnd(c,x1, . . . ,xn), i.e., c⇔ x1∧ . . .∧xn

numerical constraints such as

Min(z,x1, . . . ,xn), i.e., z= min{x1, . . . ,xn}
Product(z,x1, . . . ,xn), i.e., z= x1× . . .×xn

string constraints such as

Match(c,x,y), i.e., c⇔match(x,y)
Concat(z,x,y), i.e., z= x+y

and others, all predefined in the JNET constraint library.
As mentioned in Section 2.5, there is only oneattach constraint class implemented

in the JNET library; the user implements attached methods and creates new instances
of attach constraints to call the attached methods. In IMAGEbot, however, the parser



generates attachments from the DPADL specification by generating Java methods from
in-lined code (delimited by $. . .$) appearing in attachment definitions, together with the
signature, from which the method’s parameter list and return type can be determined.
The parser then compiles and loads the generated Java code, and uses reflection to
obtain references to the newly defined methods from their names.

For example, the following segment of DPADL code specifies that typeTile cor-
responds to the Java classtops.modis.Tile, which is a rectangular satellite image in
some specified projection covering some definite region of the Earth. A tile has a num-
ber of attributes, including the projection, the instrument used to capture the image,
the time and location where the image was captured, the pathname where the image is
stored and a unique identifier that can be used to reference the tile.

type Tile isa objectmapsto tops.modis.Tile {
......
key StringuniqueId {

constraint {
value(this) := $this.getUId()$;
this(value) = $Tile.findTile(value)$;

}
}

booleancovers(float lon, float lat) {
constraint {

......
{ this}([lon],[lat],d, y, p, value) = {$ if (value)
return tm.getTiles(lon.max, lat.min, lon.min, lat.max, d, y, p);
else return null; $};

}
}
......

}
The attributeuniqueId is declared as akey of a tile, meaning there must be aone-

to-onemapping between tiles and their unique identifiers. The constraints that enforce
this one-to-one correspondence are specified using anattach constraint instance with
two methods, generated by the parser:

<{<xvalue,1>, <xthis,1>}, Stringm1(Tile x){ return x.getUID();}>
<{<xthis,1>, <xvalue,1>}, Tile m2(Stringx){ return Tile.findTile(x);}>

wherexvalueandxthis are variables, the value 1 is the singleton domain type as discussed
in Section 2.3.

The value 1 in the above attachments means that variablexvalue can only be as-
signed a value if variablexthis is singleton, and vice versa. It is also possible to define
constraints that work for non-singleton domains, by indicating that an argument or re-
turn value represents the upper or lower bound of an interval (bℑc, dℑe) or a finite set
S . For example, another attribute of aTile in the above DPADL code is that itcovers
a given longitude and latitude. Given a particular longitude and latitude, the constraint
solver can invoke a method to find a single tile that covers it, but it can do even better.



Given a rectangular region, represented by intervals of longitude and latitude, it can
invoke a method to find a set of tiles covering that region. In this case,P ={<xthis,S>,
<xlon,bℑc>, <xlon,dℑe>, <xlat ,bℑc>,<xlat ,dℑe>, <xd,1>, <xy,1>, <xp,1>, <xvalue,1>}
andm is a method that returns a Collection ofTile objects.

The above methods, generated from the inline code and the method signature, are
compiled and loaded when the type definition is parsed, and references to the methods
are obtained using Java reflection. This enables constraint attachments to be defined at
runtime, without requiring modification to, or even access to, the source code of JNET
or constraint library.

Once created and added to JNET, both types of constraints—procedures and attachments—
are treated uniformly: whenever the domain of a variable changes, the constraints asso-
ciated with the variable are executed to propagate the changes, which is controlled by
JNET propagators.

The planner controls the high-level search, guided by heuristics derived from a
Graphplan-style [4] reachability analysis. JNET ensures the underlying CSP is con-
sistent by propagating changes made by the planner. After a plan is generated, JNET
does its own search to find values to variables representing action parameters to make
actions executable. This is an iterative process involving possible backtracks; that is, if
there are no valid parameters for a chosen action, the planner has to search for another
plan; if it is impossible to extract a plan from the current planning graph, the planning
graph has to be extended. At the end, we have a plan and a data product resulting from
executing the plan, as in Figure 4.

Fig. 4.The IMAGEbot development environment, running as a jEdit plugin. The frame on the left
shows one of the files comprising the TOPS domain description. The frame on the upper right
shows an abstracted view of a plan from Figure 2, with one action node displayed in detail. The
frame on the lower right is the data returned by the TOPS server after executing the plan.



4 Related Work

There have been a good number of constraint systems developed in recent years. Many
have been successfully applied to various real-world combinatorial optimization prob-
lems such as planning and scheduling, resource allocation, time-tabling, configuration,
etc., and more will be developed in order to meet growing application needs in terms of
enhanced modeling and solving capacity.

Early systems such as CHIP [2], CLP(R) [17], and Prolog III [9] extend Prolog
with additional constraint solving over a particular domain of interest, where the con-
straint solver in the system works as ablack boxresponsible for constraint propagation.
The black-box approach, which has very limited modeling power, has evolved into
glass-boxapproach, as in CLP(FD) [8], Eclipse [6], ILOG Solver (http://www.ilog.-
com), JCL (http://liawww.epfl.ch/~torrens/Project/JCL/), and Koalog Constraint Solver
(http://www.koalog.com/), where the underlying constraint solver can be tailored to the
users’ needs, and user constraints can be defined and added to the constraint system. For
example, CLP(FD) is a constraint logic programming language with finite domain con-
straints. Its implementation is based on the use of a single primitive constraint, variable
X in ranger, that embeds the core propagation techniques such as node and arc consis-
tencies. The more complex user constraints such as linear equations or inequations can
be defined and compiled into the primitive constraint. Constraint programming tools,
ILOG Solver (and JSolver), and Koalog Constraint Solver (which was first released in
later 2002), packaged a set of primitive constraints and of implemented basic constraint
search algorithms. These tools are open and extensible in that new constraints can be
added, and new search algorithms and heuristics can be developed by the user.

Compared to the constraint systems mentioned above, the constraint procedure
framework CNET [19] shares similar theoretical principles, except the constraints are
represented uniformly in a more general form—procedure. The procedural reason-
ing framework (CNET), which was developed inC++ as at NASA Ames, has many
capabilities that are missing from previous constraint systems, such as: i) arbitrary
constraints—there is no limit on the types of constraints that can be handled; ii) dynamic
variables and domains—the set of variables and their values need not be enumerated be-
forehand; iii) real-valued variables—constraints may involve mixtures of discrete and
continuous variables; and iv) hybrid reasoning—different reasoning techniques can be
utilized within the same system.

JNET extends CNET to supportstring domains,quantified, structured objects, and
other features, includingconstraint attachments. The idea of constraint attachment can
be traced back toprocedure attachmentin [16], where some specialized procedures (or
functions) are implemented to evaluate certain variables and those procedures areat-
tached to solvers. It has been noted in [18] that this kind of attachment applying to con-
straint satisfaction is very limited in terms of reusability, global algorithm implementa-
tion, and integration with constraint solvers. Our idea of attaching functional methods
to the execution of constraints is motivated by the requirement of integrating JNET to
TOPS (more specifically, the requirement of using executables in TOPS environment),
and a general mechanism of how to do so is implemented in JNET. In addition to the ad-
vantages of CNET over other constraint reasoning tools, JNET provides the capability



of integrating constraint reasoning system with applications domains, which we believe
is the right direction to improve the applicability of constraint technologies.

There has been little work in planner-based automation of data processing. Two
notable exceptions are Collage [23] and MVP [7], both of which also rely heavily on
constraints. Both of these planners were designed to provide assistance with data anal-
ysis tasks, in which a human was in the loop, directing the planner. Consequently, both
planners are based on action decomposition, which is more intuitive to many users.
In contrast, the data processing in TOPS must be entirely automated; there is simply
too much data for human interaction to be practical. [5] addresses workflow planning
for computation grids, a similar problem to ours, though their focus is on mapping
pre-specified workflows onto a specific grid environment, whereas our focus is on gen-
erating the workflows.

5 Conclusion

We have described the JNET constraint reasoning system and discussed its application
to a data-processing domain. JNET is implemented as a component of the IMAGEbot
planner-based agent and it provides the planner with constraint reasoning capabilities.
As a constraint reasoning system, JNET can be applied to solving constraint problems
in other real-world application domains. To do so, the user needs to define variables
and their domains, and specify the constraints using the predefined constraints in the
constraint library. For modeling application-specific constraints that are not defined in
the constraint library, JNET provides the user with two alternatives:

1. Constraints can be implemented as reusable procedural constraints by extending
the constraint template provided in JNET. This is similar to how user constraints
are defined in some other constraint systems.

2. Constraints can be implemented as a set of attached functional methods, which may
be defined at runtime, without modification to, or even access to, the JNET source
code. This is the feature makes JNET applicable to many real-world domains new
to constraint technologies.

JNET provides an easy way to integrate non-constraint-based services into a constraint-
based application; any Java classes can be used as types, and any methods provided by
those classes can be used to implement constraints. This capability is used in IMAGEbot
to integrate planning with sensing;sensorsthat return information about a software
environment, such as the locations of files, are implemented as constraint attachments;
as relevant variables become constrained, different sensors (in the form of attachments)
are activated, yielding additional constraints which may, in turn, activate other sensors.
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